The thought processes to design a pipeline for accurate extraction, processing and ultimately reporting of microplastics

Dr Lucy Woodall
University of Oxford and Nekton Foundation
Lucy.woodall@zoo.ox.ac.uk

Obtaining accurate and repeatable estimates

Accuracy Processing and comparability Reporting

Sampling

Specific reviews:

Ingested particles- Lusher et al 2017 Sediment samples - Hanvey et al 2017 Water example—

- Grab vs net- Barrows et al 2017
- Trawl comparison- Eriksen et al 2018

Anti-contamination and contamination monitoring protocols

Extraction

Renner et al 2017

Identifying

Visual- unassisted
Polarised light
Spectroscopy- Raman and FT-IR
Thermal extraction
Liquid extraction

Elert et al 2017

- No one method alone works for every question
- Faster methods do not give particle size or number but can give quantify polymer
- Visual methods required to determine state of degradation and number of particles

Measuring and reporting

Does this matter?

Yes!

Take home messages

Methods matter

- Give clear details on all aspects
- Carefully contemplate where the data can align with others
- Take replicate samples
- Use a flow meter in conjunction with surface sampling when possible

Reporting matters

- Consider the heterogeneity of the plastics fragments to determine how the data is reported
- Suggest plastic surface area is reported it is relative easy to measure and less likely to cluster around zero
- Give raw data as supplementary material

The thought processes to design a pipeline for accurate extraction, processing and ultimately reporting of microplastics

Dr Lucy Woodall
University of Oxford and Nekton Foundation
Lucy.woodall@zoo.ox.ac.uk